

INTRODUCTION

• MANY DECISIONS IN BUSINESS, INSURANCE, AND OTHER REAL-LIFE SITUATIONS ARE MADE BY ASSIGNING PROBABILITIES TO ALL POSSIBLE OUTCOMES PERTAINING TO THE SITUATION AND THEN EVALUATING THE RESULTS.

• THIS CHAPTER EXPLAINS THE CONCEPTS AND APPLICATIONS OF PROBABILITY DISTRIBUTIONS. IN ADDITION, A SPECIAL PROBABILITY DISTRIBUTION, **BINOMIAL DISTRIBUTION**, IS EXPLAINED.

DISCRETE PROBABILITY DISTRIBUTION

- A RANDOM VARIABLE IS A VARIABLE WHOSE VALUES ARE DETERMINED BY CHANCE.
- A DISCRETE PROBABILITY DISTRIBUTION CONSISTS OF THE VALUES A RANDOM VARIABLE CAN ASSUME AND THE CORRESPONDING PROBABILITIES OF THE VALUES. THE PROBABILITIES ARE DETERMINED THEORETICALLY OR BY OBSERVATION.

• <u>EX:</u> CONSTRUCT A PROBABILITY DISTRIBUTION FOR ROLLING A SINGLE DIE.

SOLUTION:

SINCE THE SAMPLE SPACE IS **S={1,2,3,4,5,6}** AND EACH OUTCOME HAS A PROBABILITY **1/6**, THE DISTRIBUTION WILL BE

Outcome <i>x</i>	1	2	3	4	5	6
Duch chility D(u)	1	1	1	1	1	1
Probability $P(x)$	6	6	6	6	$\begin{array}{c c} 5\\ \hline 1\\ \hline 6 \end{array}$	6

• <u>EX:</u> CONSTRUCT A PROBABILITY DISTRIBUTION FOR THE SAMPLE SPACE FOR TOSSING THREE COINS.

Number of heads <i>x</i>	0	1	2	3
Duch chility D (u)	1	3	3	1
Probability $P(x)$	8	8	8	8

EX: DURING THE SUMMER MONTHS, A RENTAL AGENCY KEEPS TRACK OF THE NUMBER OF CHAIN SAWS IT RENTS EACH DAY DURING A PERIOD OF 90 DAYS. THE NUMBER OF SAWS RENTED PER DAY IS REPRESENTED BY THE VARIABLE X. THE RESULTS ARE SHOWN HERE. CONSTRUCT A PROBABILITY DISTRIBUTION.

x	0	1	2	Total
# of days	45	30	15	90

I	x	0	1	2
	P(x)	$\frac{45}{90} = 0.5$	$\frac{30}{90} = 0.333$	$\frac{15}{90} = 0.167$

• THE SUM OF THE PROBABILITIES OF ALL THE EVENTS IN THE SAMPLE SPACE MUST EQUAL 1;

$$\sum P(x) = 1$$

• THE PROBABILITY OF EACH EVENT IN THE SAMPLE SPACE MUST BE BETWEEN OR EQUAL TO 0 AND 1;

$0\leq P(x)\leq 1$

• DETERMINE WHETHER EACH DISTRIBUTION IS A PROBABILITY DISTRIBUTION.

• A-

x	0	5	10	15	20
P(x)	1/5	1/5	1/5	1/5	1/5

YES, IT IS A PROBABILITY DISTRIBUTION.

• *B*-

x	0	2	4	6
P(x)	-1.0	1.5	0.3	0.2

8

NO, IT IS NOT A PROBABILITY DISTRIBUTION, SINCE P(X) CANNOT BE 1.5 OR -1.0

REQUIREMENTS FOR A PROBABILITY DISTRIBUTION

9

С-	x	1	2	3	4
	P(x)	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{9}{16}$

YES, IT IS A PROBABILITY DISTRIBUTION.

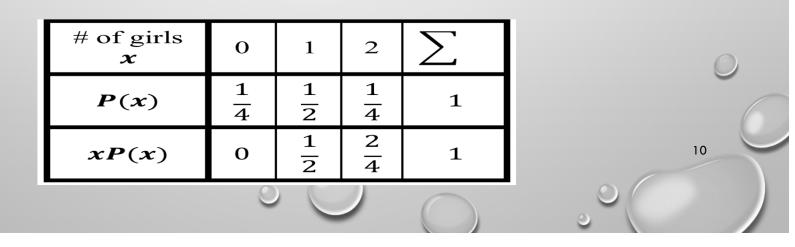
	x	2	3	7
D-	P(x)	0.5	0.3	0.4

NO, IT IS NOT, SINCE P(X)=1.2

MEAN OF A PROBABILITY DISTRIBUTION IN ORDER TO FIND THE MEAN FOR A PROBABILITY DISTRIBUTION, ONE MUST MULTIPLY EACH POSSIBLE OUTCOME BY ITS CORRESPONDING PROBABILITY AND FIND THE SUM OF THE PRODUCTS. $\mu = x_1 p(x_1) + x_2 p(x_2) + \dots + x_n p(x_n) = \sum x p(x)$

EX: IN A FAMILY WITH TWO CHILDREN, FIND THE MEAN OF THE NUMBER OF CHILDREN WHO WILL BE GIRLS.

THE PROBABILITY DISTRIBUTION IS



• EX: IF THREE COINS ARE TOSSED, FIND THE MEAN OF THE NUMBER OF HEADS THAT OCCUR.

SOLUTION:

THE PROBABILITY DISTRIBUTION IS

# of heads x	0	1	2	3	\sum
P(x)	$\frac{1}{8}$	$\frac{3}{8}$	3 8	$\frac{1}{8}$	1
xP(x)	0	$\frac{3}{8}$	6 8	3 8	$\frac{12}{8} = \frac{3}{2}$

VARIANCE OF A PROBABILITY DISTRIBUTION

- THE VARIANCE OF A PROBABILITY DISTRIBUTION IS FOUND BY MULTIPLYING THE SQUARE OF EACH OUTCOME BY ITS CORRESPONDING PROBABILITY, SUMMING THOSE PRODUCTS, AND SUBTRACTING THE SQUARE OF THE MEAN.
 - THE FORMULA FOR CALCULATING THE VARIANCE IS:

$$\sigma^2 = \sum x^2 p(x) - \mu^2$$

• THE FORMULA FOR THE STANDARD DEVIATION IS:

$$\sigma = \sqrt{\sigma^2}$$

• EX: THE PROBABILITY DISTRIBUTION FOR THE NUMBER OF SPOTS THAT APPEAR WHEN A DIE IS TOSSED

Outcome <i>x</i>	1	2	3	4	5	6
Probability $P(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

FIND THE VARIANCE AND STANDARD DEVIATION OF THE NUMBER OF SPOTS.

÷							
Outcome <i>x</i>	1	2	3	4	5	6	\sum
Probability $P(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1
xP(x)	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	5	$\frac{6}{6}$	$\frac{21}{6}$
$x^2 P(x)$	$\frac{1}{6}$	$\frac{4}{6}$	9 6	$\frac{16}{6}$	$\frac{25}{6}$	$\frac{36}{6}$	$\frac{91}{6}$

D

$$\mu = \sum xP(x) = \frac{21}{6}$$

$$\sigma^{2} = \sum x^{2}P(x) - \mu^{2} = \frac{91}{6} - \left(\frac{21}{6}\right)^{2} = \frac{91}{6} - \frac{441}{36} = \frac{546 - 441}{36}$$

$$= \frac{105}{36} = 2.92$$

$$\sigma = \sqrt{\sigma^{2}} = \sqrt{2.92} = 1.71$$

• EX: FIVE BALLS NUMBERED 0, 2, 4, 6 AND 8 ARE PLACED IN A BAG. AFTER THE BALLS ARE MIXED, ONE IS SELECTED, ITS NUMBER IS NOTED AND THEN IT IS REPLACED. IF THIS EXPERIMENT IS REPEATED MANY TIMES, AND THE PROBABILITY DISTRIBUTION IS

# on ball x	0	2	4	6	8
Probability $P(x)$	k	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

FIND THE MISSING VALUE (K), MEAN, VARIANCE AND STANDARD DEVIATION OF THE NUMBERS ON THE BALLS.

$$k + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = 1 \rightarrow k + \frac{4}{5} = 1 \rightarrow k = 1 - \frac{4}{5} \rightarrow k = \frac{1}{5}$$

$$\frac{\# \text{ on ball } x \qquad 0 \qquad 2 \qquad 4 \qquad 6 \qquad 8 \qquad \sum}{\frac{\# \text{ on ball } x \qquad 0 \qquad 2 \qquad 4 \qquad 6 \qquad 8 \qquad \sum}{\frac{1}{5} \qquad \frac{1}{5} \qquad \frac{1}{5}$$

THE BINOMIAL DISTRIBUTION

• MANY TYPES OF PROBABILITY PROBLEMS HAVE ONLY TWO POSSIBLE OUTCOMES OR THEY CAN BE REDUCED TO TWO OUTCOMES.

• EXAMPLES:

- WHEN A COIN IS TOSSED IT CAN LAND ON HEADS OR TAILS.
- WHEN A BABY IS BORN IT IS EITHER A BOY OR GIRL.
- A MULTIPLE-CHOICE QUESTION CAN BE CLASSIFIED AS CORRECT OR INCORRECT.

THE BINOMIAL EXPERIMENT IS A PROBABILITY EXPERIMENT THAT

SATISFIES THESE REQUIREMENTS:

• EACH TRIAL CAN HAVE ONLY TWO POSSIBLE OUTCOMES -SUCCESS OR FAILURE.

• THERE MUST BE A FIXED NUMBER OF TRIALS.

• THE OUTCOMES OF EACH TRIAL MUST BE INDEPENDENT OF EACH OTHER.

• THE PROBABILITY OF A SUCCESS MUST REMAIN THE SAME FOR EACH TRIAL.

THE OUTCOMES OF A BINOMIAL EXPERIMENT AND THE CORRESPONDING PROBABILITIES OF THESE OUTCOMES ARE CALLED A **<u>BINOMIAL DISTRIBUTION</u>** WHICH IS THE PROBABILITY OF EXACTLY X SUCCESSES IN N TRIALS

$$P(x) = \frac{n!}{x! (n-x)!} p^x q^{n-x}$$

WHERE

- **P** THE NUMERICAL PROBABILITY OF SUCCESS
- **Q** THE NUMERICAL PROBABILITY OF FAILURE

$$p + q = 1$$

- N THE NUMBER OF TRIALS
- X THE NUMBER OF SUCCESSES X=0, 1, 2, ..., N

• EX: A COIN IS TOSSED 3 TIMES. FIND THE PROBABILITY OF GETTING EXACTLY TWO HEADS.

THIS CAN SOLVED USING THE SAMPLE SPACE

HHH,HHT,HTH,THH,HTT,THT,TTH,TTT

THERE ARE THREE WAYS OF GETTING 2 HEADS.

 $P(getting \ 2 \ heads) = \frac{n(getting \ 2 \ heads)}{n(S)} = \frac{3}{8} = 0.375$

- OR USING THE BINOMIAL DISTRIBUTION AS FOLLOWING
 - WE HAVE FIXED NUMBER OF TRIALS (THREE), SO **N=3**
 - THERE ARE TWO OUTCOMES FOR EACH TRIAL, H OR T

• THE OUTCOMES ARE INDEPENDENT OF ONE ANOTHER • THE PROBABILITY OF SUCCESS $(1_2, \text{ so } p = \frac{1}{2} \Longrightarrow q = 1 - \frac{1}{2} = \frac{1}{2}$ HERE *X=2* SINCE WE NEED TO FIND THE PROBABILITY OF

GETTING 2 HEADS,

$$P(x = 2) = \frac{n!}{x! (n - x)!} p^{x} q^{n - x} = \frac{3!}{(2!)(1!)} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)$$
$$= \frac{(3)(2)(1)}{(2)(1)(1)} \left(\frac{1}{4}\right) \left(\frac{1}{2}\right) = \frac{6}{16} = \frac{3}{8} = 0.375$$

1

BINOMIAL DISTRIBUTION PROPERTIES

THE MEAN, VARIANCE, AND STANDARD DEVIATION OF A VARIABLE THAT HAS THE BINOMIAL DISTRIBUTION CAN BE FOUND BY USING THE FOLLOWING FORMULAS.

22

• MEAN

- $\mu = np$
- VARIANCE
 - $\sigma^2 = npq$
- STANDARD DEVIATION

$$\sigma = \sqrt{\sigma^2}$$

• EX: A COIN IS TOSSED 4 TIMES. FIND THE MEAN, VARIANCE AND STANDARD DEVIATION OF THE NUMBER OF HEADS THAT WILL BE OBTAINED.

23

In this case
$$n = 4$$
, $p = \frac{1}{2} \Longrightarrow q = 1 - \frac{1}{2} = \frac{1}{2}$

$$\mu = np = (4)\left(\frac{1}{2}\right) = 2$$

D

$$\sigma^2 = npq = (4) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = 1$$

 $\sigma = \sqrt{\sigma^2} = \sqrt{1} = 1$